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Abstract
An anharmonic extension of the Einstein model is developed in order to describe the effect of
translational zero point motion on structural and thermodynamic properties of para-H2 and
ortho-D2 crystals in the zero temperature limit. Accordingly, the molecules carry out large
amplitude translational motions in their matrix cage, which are formed by the frozen
environment of all other molecules. These translations lead from the molecular equilibrium
positions via the harmonic to the anharmonic domain of the potential energy surface. The
resulting translational distributions are roughly isotropic, and they have approximately Gaussian
shapes, with rather broad full widths at half-maximum, FWHM(para-H2/ortho-D2)

= 1.36/1.02 Å. The translational zero point energies induce expansions of the crystals, in
nearly quantitative agreement with experimental results. Furthermore, they make significant
contributions to the sublimation energies and zero pressure bulk moduli. These quantum effects
decrease with heavier molecular masses. The corresponding isotope effects for ortho-D2

compared to para-H2 are confirmed by application of the model to Ar crystals. The results
imply consequences for laser induced reaction dynamics of dopants with their host crystals.

1. Introduction

As a consequence of the light mass of the constituent particles
and their weak interaction molecular para-hydrogen (p-H2)
and ortho-deuterium (o-D2) form translational quantum solids
and many of their properties are determined by zero point
energy (ZPE) effects. Most of the previous research has been
focused on the structural and thermodynamic properties (for an
early review, see [1]). Moreover, recent detailed spectroscopic
investigations of dopant molecules revealed a host of quantum
dynamical effects including chemical reactions triggered by
laser excitation [2, 3]. For instance, photo-dissociation of Cl2

at 355 nm can lead to the formation of HCl provided that H2

is vibrationally excited [4–6]. Due to the exponential scaling
of quantum dynamics simulations with the number of degrees
of freedom, simulation of such reaction dynamics requires
approximation schemes such as quantum-classical ones [7] or

models in reduced dimensionalities. For reactive collisions
between Cl and H2 in p-H2 crystals, or Cl+D2 in o-D2 crystals,
this should include information on the center of mass (c.o.m.)
motions which are determined by the ZPE effects. The present
anharmonic extension of the Einstein model provides this
information; in fact, the resulting values of the mean zero point
amplitudes have already been applied as input to our previous
quantum dynamics simulations of the Cl + H2 reaction in solid
p-H2 [6]. The respective experimental studies [3–5] motivate
not only the previous [6] but also the present investigation.

Our model considers single p-H2 or o-D2 molecules
moving in the frozen environment of all other p-H2 or o-D2

molecules of the crystals, respectively. Provided that the
particle motions with respect to the equilibrium lattice site
were harmonic, this situation would correspond to the Einstein
model [8]. In fact, the Einstein model has been applied to
solid p-H2 before in the context of a path integral simulation
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of structural and thermodynamic properties [9] (for extended
simulations of p-H2 quantum fluid behavior see, e.g. [10]).
Providing an analytically solvable reference system within
a variational procedure, it was shown to give rather good
results e.g., for the pair distribution function and for the
expansion of the crystal due to zero point motion. Therefore,
it represents an interesting alternative to the more elaborate
variational approaches starting from the Jastrow ansatz for the
wavefunction [1, 11] such as the recent diffusion Monte Carlo
(DMC) study in [12].

Our description of the translational quantum effects of
p-H2 versus o-D2 crystals in frozen environment will, however,
go beyond the traditional Einstein model: we shall consider
translational motions in matrix cages, which will be referred
to as ‘Einstein cells’ (ECs), with anharmonic potentials VEC.
A derivation of the model with the underlying assumptions
is presented in appendix. Essentially, this is a quantum
mechanical extension of the classical separable potential (CSP)
method of Gerber and co-workers [7, 13]. The important
role of anharmonicity is motivated by the fact that—as we
shall demonstrate below—the translational motions in the
quantum crystal have rather large amplitudes, compared to
small amplitude motions in ‘classical’ crystals such as solid Ar.
As a consequence, the translational motions are not confined to
small domains close to the equilibrium positions, where VEC is
nearly harmonic. Instead, they penetrate into wider domains
where anharmonicities are significant. These anharmonicities
are caused by the interaction potentials between the moving
molecule and all other ones in the frozen environment of
the quantum crystals. For an adequate description of these
interactions, we employ the widely used empirical potential
of Buck et al [14, 15]. It has been derived from scattering
data supplemented by feedback from variational calculations
of solid state properties. For comparison, we have also
applied the empirical H2–H2 potential due to Silvera and
Goldman [16], which accounts for three-body interactions
which are usually deemed unimportant for the spherically
symmetric J = 0 p-H2. Recently, the influence of the potential
on structural and thermodynamical properties was explored in
a DMC study [12]. Interestingly it was found that adding a
triple dipole interaction term to the original Buck potential
gives a slight improvement e.g. for the heat of sublimation.
On the other hand, the pair distribution function at equilibrium
density was not noticeably affected by the choice among
these potentials. There have been efforts to determine the
full anisotropic interaction potentials using ab initio quantum
chemical methods. A benchmark coupled cluster calculation
has been reported in [17]. Comparing the isotropic part with
the Silvera–Goldman potential it is found, for instance, that
the latter is slightly too attractive. However, as the authors
noted the comparison of gas phase ab initio and condensed
phase empirical potentials has to be taken with care as the latter
implicitly account for certain condensed phase effects. To
summarize, all the results which are presented below have been
obtained using the empirical potential of Buck et al [14, 15].
Suffice it here to say that we have confirmed that the results
based on the potential of Silvera and Goldman [16] are very
similar.

The specific goals of the present investigation call
for several tasks, starting from the determination of the
anharmonic potential energy surfaces VEC for translational
motion in the ECs, as outlined above. Next we shall evaluate
the corresponding ground state wavefunctions, together with
the corresponding rather broad translational distributions
which penetrate into the anharmonic domains of VEC, and the
translational ZPEs. Then we shall consider the consequences
for the structural and thermodynamic properties of the quantum
crystals. These include the lattice expansion from the classical
reference R0,class to the quantum mean values R0,H2 or R0,D2

of the nearest neighbor (NN) distances and the corresponding
distributions, the sublimation energies, and the bulk moduli,
focusing on isotope effects. In order to confirm the latter, we
shall apply our model also to solid Ar.

The paper is organized as follows: in section 2 we
will outline the extended Einstein model, see the appendix
for further details. Results for the translational motions of
the p-H2 and o-D2 molecules in ECs of solid p-H2 or o-D2

crystals, respectively, with anharmonic potentials VEC, and a
discussion of quantum effects on the geometric structures, pair
distribution functions, sublimation energies, and bulk moduli
are given in section 3. For comparison and demonstration
of ZPE effects this section also includes results for solid Ar.
Section 4 summarizes and gives some perspectives on the
consequences of the present model for simulations of laser
induced reactions of dopants in solid p-H2 or o-D2.

2. Model

Depending on the growth conditions solid para-H2 exhibits
either a face-centered cubic (fcc) or a hexagonal closed packing
(hcp) lattice [1]; here we will use the fcc form shown in
cuboctrahedral representation in figure 1. Further, we will
assume that for the J = 0 spherical X2 = p-H2 or o-D2

molecules, it will be sufficient to account for the isotropic part
of the interaction potential V (Ri j ), where Ri j = |Ri − R j |
is the c.o.m. distance between the pair of molecules labeled i
and j with centers of masses located at Ri(R0) and R j (R0),
respectively. The notation Ri(R0) indicates that the positions
Ri of the molecules in the fcc lattice depend on the nearest
neighbor (NN) distance R0. For V (R), we use the empirical
interaction potential provided by Buck et al [14, 15] (in units
of kb K, abbreviated K)

V (R) = A exp(−β R−γ R2)−
(

C6

R6
+ C8

R8
+ C10

R10

)
F(R) (1)

with A = 1177 × 103 K, β = 2.779 Å
−1

, γ = 0.08 Å
−2

,
C6 = 84.18 × 103 K, C8 = 417.86 × 103 K, and C10 =
2617.5 × 103 K. Further, we have

F(R) = exp(−(Rc/R − 1)2)θ(Rc − R) + θ(R − Rc) (2)

which switches-off the long-range interaction at the cut-off
distance Rc = 5.102 Å. Using the interaction potential
between individual X2 molecules, the classical potential energy
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per molecule of the fcc lattice

Vfcc(R0) = 0.5
∑
j>1

V (|R1(R0) − R j (R0)|) (3)

(cf appendix) has been minimized by varying the NN distance,
R0. The value of R0 which yields the minimum value
of Vfcc(R0) is called the ‘classical NN distance’, R0,class.
Likewise, the value of Vfcc(R0,class) at R0 = R0,class is called the
‘classical sublimation energy’. Periodic boundary conditions
were employed and the convergence with respect to the size of
the cubic simulation box has been investigated. It turned out
that convergence of R0,class in the third digit is reached with a
simulation box including 4000 molecules.

The extended Einstein model considers anharmonic
translational motions of a single molecule in its EC.
Exemplarily we focus on motions of the central molecule, with
the coordinates of its c.o.m. labeled R1. Its EC consists of
all other molecules frozen at their mean fcc lattice positions
〈R2(R0)〉, 〈R3(R0)〉, . . . depending on the NN distance R0.
The position of the c.o.m. of the central molecule is written
as R1 = δRe, where δR is the distance from the origin,
and e is a unit vector along the direction of the displacement.
The potential VEC for translational motions of the central p-H2

or o-D2 molecules from R1 = 0 to δRe in the fcc lattice
characterized by the NN distance R0 is

VEC(δR; e|R0) = 0.5
∑
j>1

V (|δRe − 〈R j (R0)〉|) − Vfcc(R0).

(4)
Here, the notation (· · · |R0) indicates that VEC depends on the
NN distance R0. Further, subtraction of the fcc lattice potential
energy per molecule Vfcc(R0) implies the normalization of VEC

such that VEC(δR = 0; e|R0) = 0 at the center of the EC.
Exemplarily, we consider the cases where the unit vector

e points along the crystallographic 〈100〉, 〈110〉, and 〈111〉
directions of the otherwise frozen lattices (cf figure 1).
The resulting wavefunctions �0(δR; e|R0) describing one-
dimensional (1d) translational motions of the X2 = p-H2 or
o-D2 molecules with masses MX2 = 2mH = 2.0158 u or
MX2 = 2mD = 4.0028 u, respectively, along δR, in the ground
state (�0), for the given orientation e and NN distance R0,
are evaluated as solutions of the corresponding 1d Schrödinger
equations (cf appendix),[
− h̄2

2MX2

d2

dδR2
+ VEC(δR; e|R0)

]
�0,X2(δR; e|R0)

= E0,X2(e|R0)�0,X2(δR; e|R0), (5)

using the Fourier–Grid–Hamiltonian method [18]. This yields
the ZPEs E0,X2(e|R0) and the probability distributions

ρ0,X2(δR; e|R0) = |�0,X2(δR; e|R0)|2. (6)

The traditional Einstein model would yield isotropic Gaussian
distributions corresponding to the ground state wavefunctions
for the harmonic approximation to VEC(δR; e|R0), with
force constant kEC(R0). Accordingly, the ZPEs in
harmonic approximation are 0.5h̄ωEC, with frequency ωEC =√

kEC(R0)/MX2 . As we shall show in section 3, however,
for increasing values of the NN distance R0, significant

Figure 1. Cuboctrahedral representation of the fcc X2 = p-H2 or
o-D2 lattice with the three spatial directions along which the motion
of the central X2 molecule (black sphere) is considered. The nearest
neighbor distance between the spherically symmetric X2 molecules
will be denoted by R0.

anharmonicities change VEC(δ; e|R0) from single minimum to
double minimum profiles implying negative force constants
and, therefore, imaginary frequencies ωEC, calling for
the present anharmonic extension of the Einstein model.
Nevertheless, it turns out that for values of R0 close to the
experimental ones, the ZPEs and the probability distributions
depend only weakly on the direction e of the anharmonic
potential cut VEC(δR; e|R0). This near-isotropy is an empirical
result which comes as a gift: it allows us to approximate the
total translational ZPE of a single p-H2 or o-D2 molecule in
their ECs by

E0,X2,EC(R0) ≈ E0,X2(e
〈100〉|R0) + E0,X2(e

〈110〉|R0)

+ E0,X2(e
〈111〉|R0). (7)

Moreover, in spite of the anharmonicity of the nearly isotropic
potentials VEC(δR; e|R0), it turns out that the probability
distributions are approximately Gaussian, in the domain of the
experimental R0,

ρ0,X2(δR; e|R0) ≈ N0,X2 e−(δR/	R(X2 |R0))
2

(8)

with widths parameter 	R(X2|R0) depending on the isotope
X2 = p-H2 or o-D2, and on the NN distance R0. The
corresponding FWHM is

FWHM(X2|R0) = √
2 ln 2	R(X2|R0). (9)

3. Results

The classical equilibrium NN distance obtained with the Buck
potential is R0,class = 3.31 Å whereas the experimental values
are 3.79 Å for p-H2 and 3.61 Å for o-D2 [1]. Moreover,
the classical sublimation energy is 283.6 K whereas the
experimental values for the sublimation energies are 89.7 K
for p-H2 and 132.5 K for o-D2. These discrepancies call
for quantum corrections, in the frame of the present extended
Einstein model.

3
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The anharmonic potential energy surfaces VEC(δR; e|R0)

for translational motions of p-H2 or o-D2 molecules versus
δR, in their ECs along the direction e = e〈100〉, e〈110〉, and
e〈111〉 are shown in figures 2(a)–(c), exemplarily for the NN
distances R0 = R0,class = 3.31 Å, R0 = 3.79 Å, and R0 =
4.2 Å, respectively. Also shown are the ZPEs E0,H2(e|R0)

and the probability distributions ρ0,X2(δR; e|R0). In panel
(b) we also give the Gaussian approximation, equation (9).
The corresponding value of the FWHM is FWHM(p-H2|R0 =
3.79 Å) = 1.36 Å. These rather broad FWHMs imply that the
translational wavefunctions enter the anharmonic domains of
VEC(δR; e|R0) as anticipated.

Apparently, expanding the lattice causes the potential to
widen and at the same time to increase the anharmonicity. In
general the potentials along the 〈110〉, and 〈111〉 directions are
steeper as compared to the 〈100〉 case due to the configuration
of the repulsive cage, cf figure 1. At 3.31 Å the differences
between the distributions are hardly discernible; the average
ZPE is 85.4 K. For the experimental value of 3.79 Å the
ZPE drops to E0,cell = 30.2 K and the differences in the
distributions ρ0,p−H2(δR; e|R0) depending on e are noticeable
but not significant. For larger NN distances, the potential
develops a double minimum character, giving clear evidence
for the importance of anharmonicity, cf figure 2(c).

The lattice energy per X2 = p-H2 or o-D2 molecule
Vfcc,X2(R0) and the translational ZPEs E0,X2,EC(R0) in the ECs
depend on the NN distance R0 as shown in figure 3(a). The
total quantum mechanical energy of that particle therefore is

V0,crystal,X2(R0) = Vfcc,X2 (R0) + E0,X2,EC(R0). (10)

Plotting this function as in figure 3(a) we obtain the correction
to the classical equilibrium NN distance due to translational
zero point motion. For p-H2, the value so obtained is
R0,p-H2

= 3.86 Å which is only 2% larger than the
experimental value and thus a substantial improvement as
compared to the classical case. The width of the ground
state distribution at 3.86 Å is found to be FWHM(p-H2|R0 =
3.86 Å) = 1.46 Å. V0,crystal,X2(R0 = R0,p-H2

) can also be
used to calculate the sublimation energy which is 114.9 K,
that is, 29% above the experimental value of 89.4 K [19].
It is interesting to compare the present values of equilibrium
distance and sublimation energy with the values reported
on the basis of DMC calculation for the same potential.
In [12] the sublimation energy was found to be 93.4 K and
R0,p-H2

= 3.78 Å. This indicates that the error as compared
with experiment is only partly due to the used interaction
potential. In fact for the Silvera–Goldman potential [16] the
DMC sublimation energy is 87.4 K at R0,p-H2

= 3.78 Å.
The Silvera–Goldman potential has been originally developed
as an effective potential using the self-consistent phonon
approximation [16]. Within this approximation it gives a
sublimation energy of 85.5 K at R0,p-H2

= 3.77 Å. Comparing
the results of the various methods it is clear that the present
anharmonic extension of the Einstein model accounts for most
of the quantum corrections to the classical model, cf figure 3.
It does not provide, however, an improvement as compared
with the DMC or the self-consistent phonon approach. Besides
its numerical simplicity, the main advantage of this method is

Figure 2. One-dimensional densities for the c.o.m. motion of a p-H2

molecule in the matrix cage along the different spatial directions
shown in figure 1. The NN distance corresponds to the classical
minimum value, R0,class, obtained for the Buck interaction potential
(a), the experimental value of 3.79 Å (b), and R0 = 4.20 Å (c). Panel
(b) also shows the result of a Gaussian fit to the equally weighted
average of the ground state for the three directions with
FWHM(H2|R0 = 3.79) = 1.36 Å. The one-dimensional Schrödinger
equations, equation (5), have been solved on a grid of 2000 points in
the interval [-4: 4] Å.

that it can be applied to reactions in quantum solids as will be
discussed in section 4.

The procedure can be adapted to o-D2 solids as well, by
merely changing the mass in the one-dimensional Schrödinger
equation. Respective results are shown in figure 3(b). Here
the zero point correction shifts the equilibrium NN distance to

4
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Figure 3. (a) Total interaction energy between the crystal and the
p-H2 molecule in the EC, Vfcc,H2 , ZPE of the tagged molecule,
E0,P-H2,EC, and ZPE-corrected interaction energy V0,crystal,H2 as a
function of the NN distance R0. The cross marks the experimental
equilibrium distance and the corresponding sublimation energy [1]
and the square the minimum of V0,crystal,H2 (R0). A harmonic
expansion with respect to this equilibrium distance is shown as a
dotted line. Panel (b) reports the results of an analogous calculation
for o-D2.

3.64 Å in excellent agreement with the experimental value of
3.61 Å [1]. Also the energy of sublimation which is found to
be 148.5 K is in better agreement with the experimental value
of 132.3 K [19] as compared to the p-H2 case.

Having V0,crystal,X2(R0) for both isotopes at hand, one can
determine the bulk moduli (i.e. the inverse compressibilities)
which are calculated according to

B = −

∂p

∂

= 


∂2V0,crystal,X2

∂
2

= 
(R0/3
)2 ∂2V0,crystal,X2

∂ R2
0

∣∣∣
R0=R0,X2

=
√

2

9R0

∂2V0,crystal,X2

∂ R2
0

∣∣∣
R0=R0,X2

(11)

(
: volume of the elementary cell, here of the fcc lattice). The
harmonic approximation to V0,crystal,X2 in the vicinity of the
quantum mechanical equilibrium distance is shown in figure 3.
Note that the range of the harmonic approximation is rather
limited. Nevertheless, the extended Einstein model yields the
values of B = 1.6 and 3.8 kbar for the p-H2 and o-D2 quantum

Figure 4. Total interaction energy between the argon crystal and a
tagged Ar atom in the EC, Vfcc,Ar, ZPE of the tagged molecule,
E0,Ar,EC, and ZPE-corrected interaction energy V0,crystal,Ar as a
function of the NN distance. The cross marks the experimental
equilibrium distance and the corresponding sublimation energy, and
the square the minimum of V0,crystal,H2 (R0).

crystals, in satisfactory agreement with the experimental
values, 1.7 and 3.2 kbar [20], respectively. Comparison of
the results for p-H2 and o-D2 reveals the following additional
isotope effects: the ZPEs decrease from the values of
E0,p-H2,EC(R0) to E0,o-D2,EC(R0) as the mass increases from
Mp-H2

to Mo-D2 . As a consequence of this quantum isotope
effect, the expansion of the p-H2 crystal from R0,class = 3.31 Å
to R0,p-H2

= 3.86 Å by 0.55 Å drops to the smaller value of
R0,o-D2 = 3.65 Å by only 0.34 Å. At the same time, the rather
strong decrease of the sublimation energy, for the classical
value Vfcc,X2 (R0,class) = 283.6 K to V0,crystal,H2(R0,p-H2

) =
115 K drops to just V0,crystal,D2(R0,o-D2) = 150 K. Thus in
general, the quantum effects decrease with heavier masses
of the isotopomer. In order to support this trend, we have
also evaluated the corresponding quantum effects for an
argon fcc lattice, based on the Ar–Ar interaction potential
of [21]. The much larger mass MAr = 39.95 u compared
to Mo-D2 and Mp-H2

implies that the quantum effects of the
zero point translational motions should be almost negligible.
This prediction is confirmed in figure 4 which shows the
zero point corrected potential V0,crystal,Ar(R0) as well as its
classical and quantum contributions for the case of an argon
fcc lattice. As expected, the zero point correction gives
only a small shift of the equilibrium distance from 3.74 to
3.79 Å and for the sublimation energy a change from 1066
to 973 K. For comparison, the experimental values of the
NN distance and sublimation energy are 3.759 Å [22] and
929 K [23], respectively. Overall, these values are in accord
with the expectation that the importance of ZPE effects is
significantly reduced due to the heavier mass of the argon
atoms.

Finally, we have estimated the pair distribution function
using the density calculated at the quantum corrected
equilibrium distance. The pair distribution has been shown to
be rather insensitive concerning the interaction potential [12].
In figure 5 we give as a reference the pair distribution function

5
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Figure 5. DMC (adopted from [12]) (dotted line) and present
quantum mechanical (solid line) pair distribution function for p-H2 at
R0 = 3.79 Å. The quantum mechanical distribution has been
obtained from figure 2. Note that the two quantities are normalized in
a different way, i.e. the absolute value of the first peak cannot be
compared.

adopted from the DMC simulations of [12]. The first two peaks
reflect the local shell structure of the lattice. Its emergence
starting from clusters of different sizes has been investigated
in [24, 25], for instance. The probability distribution for
the translational motion of a given H2 molecule taken at the
quantum corrected equilibrium position can be used to estimate
the position and width of the first peak in the pair distribution
which is due to the NN molecules. This distribution function
corresponds to the distribution of the central molecule in the
crystal with respect to the mean value of the fixed nearest
neighbors. Despite the simplicity of this approach, which
does not take into account the zero point motion of the
neighbors, the result is in rather good agreement with the more
sophisticated DMC simulation, as can be seen in figure 5.

4. Conclusions

In summary we have presented an independent particle model
which is an anharmonic extension of the Einstein model to
simulate the effect of quantum mechanical translational zero
point motion on structural and thermodynamic properties of
solid p-H2. Despite its apparent simplicity, the model performs
surprisingly well in predicting the expansion of the quantum
crystal due to translational delocalization of the H2 molecules.
Other quantities such as the sublimation energy and the bulk
modulus are in qualitative agreement with experimental data.
Results of comparable quality have been obtained for o-D2

and argon where the importance of quantum effects diminishes
due to the heavier mass. A possible improvement of the
present model should include the effect of zero point motion
of the nearest neighbors on the potential in the Einstein
cell.

The utility of the present model lies, however, not in
the quantitative prediction of bulk properties where it cannot
compete with the DMC method or even the self-consistent
phonon approximation or its anharmonic extension [11]. The

advantage of this model, which it shares with the CSP
approach [7], is that it can be straightforwardly used for
applications in reaction dynamics. Here, the present results
imply important consequences for laser induced reactions of
dopants with p-H2 or o-D2 molecules in the quantum crystals,
quite different from corresponding reactions in the gas phase,
or in ‘classical’ rare gas solids. As an example, consider the
reaction

Cl(2P3/2) + H2(v = 1) → HCl + H (12)

in solid p-H2, which may be induced by ultraviolet (UV) and
infrared (IR) co-irradiations causing electronic excitations of
matrix-isolated Cl2 molecules in the first excited 1�u state
and subsequent photo-dissociation to two Cl(2 P3/2) atoms,
and vibrational excitation of the molecular reactant H2(v =
1), respectively [5]. In the gas phase, the distribution of
the distances between the reactants is quasi-infinite, implying
sharp distributions in momentum space, at least in the case
of continuous wave (cw) excitations. In contrast, ‘classical’
rare gas matrices constrain vibrational zero point motions
to rather small amplitudes, implying large distributions of
momenta which tend to wash out any sharp features of
the reaction probabilities versus translational energy—this
concerns e.g., the rather sudden onset of the reactivity at
reaction thresholds as well as possible resonance phenomena,
cf [26, 27]. Quantum solids provide an intermediate scenario,
with zero point amplitudes that are much larger than for
classical solids, yet much smaller than in the gas phase.
Accordingly, one may predict that those sharp features which
occur in gas phase reactions, such as resonances, should
still be observable in quantum solids, entirely different from
classical solids. Indeed, first signatures of resonances in the
Cl + H2 reaction in solid p-H2 have already been predicted
in [6]. Systematic analysis by means of quantum dynamics
simulations is provided in [28]. The results in [6] and [28] are
based, in part, on the present extended Einstein model for solid
p-H2. The complementary results for solid o-D2 should allow
comparative predictions and analyses of the Cl+H2 and Cl+D2

reactions in p-H2 versus o-D2 matrices; work along these lines
is in progress. By extrapolation, the present model may also
be extended to applications to dopants in quantum clusters, see
e.g. [29].
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Appendix

The present anharmonic extension of the Einstein model
of the para-hydrogen (X2 = p-H2) or ortho-deuterium
(X2 = o-D2) crystals aims at an approximate description
of the ground state which is populated preferably at low
temperature. This approach may also be considered as a
quantum mechanical extension of the CSP method, which has
been developed by Gerber and co-workers, starting from a
variational ansatz [7, 13]. Accordingly, each X2 molecule
moves in the mean field of all others. Specifically, the
CSP method provides an estimate of the mean field in
terms of classical trajectories for the other particles. At
very low temperatures (as in the present application), these
trajectories accumulate close to local potential minima in
the crystal. Our extension replaces those trajectories by the
quantum mechanical mean values of the particle positions.
By Ehrenfest’s theorem, these mean values coincide with the
potential minima. We anticipate corresponding fcc lattice
symmetry of the crystal [1], with nearest neighbor distance
R0. Here, we assume that the X2 molecules appear spherical,
in accord with the properties of the X2 molecules in their
vibrotational ground state (v, J, M = 0, 0, 0). Neglecting
intramolecular degrees of freedom, the Hamiltonian for the
motions of the centers of masses R j of N X2 molecules labeled
j = 1, 2, . . . , N in the crystal is

H =
N∑

j=1

Tj +
N−1∑
i=1

N∑
i< j

Vi j

=
N∑

j=1

Tj + 1
2

N∑
j=1

N∑
i �= j

Vi j

=
N∑

j=1

(Tj + Vj) (A.1)

where Tj = −h̄2	 j/(2MX2 ) describes the kinetic energy of
the (center of mass of the) X2 molecules labeled j , Vi j =
V (|Ri − R j |) denotes the interaction energy between X2

molecules i and j , and

Vj = 1
2

∑
i �= j

Vi j (A.2)

is the interaction of the X2 molecule labeled j with all others.
For convenience, the ‘central’ X2 molecule in the crystal is
labeled j = 1. Assuming large crystals and neglecting effects
of crystal boundaries, symmetry and periodicity imply that
the ground state wavefunction of the crystal is translationally
invariant with respect to the fcc lattice with mean nearest
neighbor distance R0. Accordingly, the wavefunction is
invariant with respect to those permutations of the centers of
masses of the p-H2 molecules, which correspond to translations
of the fcc lattice with nearest neighbor distance R0. As a
consequence, the ground state wavefunction yields the mean
values of the coordinates 〈Ri (R0)〉 of the centers of masses
of the X2 molecules labeled i , which are located at periodic
equilibrium positions of the fcc lattice, parametrized by the
nearest neighbor distance R0. Moreover, each of the X2

molecules ‘sees’ the same environment. This is approximated
by replacing equation (A.2) with

V (R j |R0) ≈ 1
2

∑
i �= j

V (|R j − 〈Ri (R0)〉|) (A.3)

i.e. we consider the interaction of the X2 molecule j at R j

with all other molecules i at their mean positions 〈Ri (R0)〉,
neglecting effects of the distributions of probability densities
of the X2 molecules i around their mean values 〈Ri (R0)〉.
Accordingly, the Hamiltonian of the extended Einstein model
is approximated as

H ≈
N∑

j=1

HEC, j , (A.4)

with equivalent Hamiltonian operators HEC, j for the individual
X2 molecules j , in particular

HEC,1 = − h̄2	1

2MX2

+ VEC(R1|R0) (A.5)

for the ‘central’ X2 molecule, where

VEC(R1|R0) = 1
2

∑
i �=1

V (|R1 − 〈Ri (R0)〉|) (A.6)

is its effective potential energy in its ‘Einstein cell’ (EC). The
ground state energy of the crystal is then equal to N times the
ground state energy of the representative X2 molecule labeled
j = 1, or in other words, the mean ground state energy per
molecule is obtained as solution of the Schrödinger equation

HEC,1�0(R1|R0) = E0,X2,EC(R0)�0(R1|R0), (A.7)

depending parametrically on the nearest neighbor distance R0,
as indicated by the notation (· · · |R0).

The interaction potential V (|Ri − R j |) between the
individual molecules i and j is specified in section 2; note
that the resulting potential VEC(R1|R0) of the X2 molecule
in its Einstein cell may be anharmonic and anisotropic,
calling for the present extension beyond the traditional
Einstein model. In section 2, we consider additional
approximations beyond (A.7); in particular, we explore
corresponding uni-directional, one-dimensional motions of
the central X2 molecule in its Einstein cell, showing
that the three-dimensional motion is nearly isotropic but
anharmonic.
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